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A method of grid adaptation using Monge-Kantorovich optimi-
zation has recently been developed [1]. This method enforces 

equidistribution of an error estimate of a discretized partial differ-
ential equation (PDE), based on the principle that the total error is 
minimized if the grid is chosen to equidistribute the local error. In 
1D this condition determines the grid uniquely; in higher dimen-
sions, equidistribution alone does not determine the grid uniquely. 
In Monge-Kantorovich theory, one minimizes

enforcing equidistribution as a constraint. The variables x(ζ) and 
x′(ζ) are mapped from the logical or computational space Ξ, 
which is the unit square (unit cube in 3D) with a uniform grid, to 
the physical space Χ, which can be fairly arbitrary [2]. For time-
stepping applications, the images x(ζ) and x′(ζ) for a uniform 
grid on Ξ represent the adapted grid on Χ at two different times. 
Equidistribution is enforced by requiring that the Jacobian J ≡ det 
(∂x'i /∂xj) = ρ(x)/ρ′(x′), where ρ and ρ′ are error estimates at the two 
times. Minimizing W with the equidistribution constraint leads to 
the result

                                        
and substituting this gradient condition into the equidistribution 
condition leads to the classic Monge-Ampère equation [1] or MA 
equation

                          
where Φ(x) = x2/2 + φ(x). Notice that nonlinearity enters in two 
ways: in the quadratic terms on the left (the Hessian), and in the 

denominator on the right (where x′ = x + ∇φ). Neumann boundary 
conditions  on the boundary ∂Χ are used, to assure that 
boundary points move to boundary points. The operator on the 
left with these boundary conditions has a null space φ → φ + C. 
Correspondingly, we must require that the right-hand side be in its 
range, i.e., ∫V [ρ(x)/ρ′(x′) – 1] dV = 0. This is the nonlinear analog of 
the solvability condition ∫ ρdV = 0 in solving the Poisson equation 
with Neumann boundary conditions. This nonlinear solvability 
condition, which depends on the map x′(x) at each Newton 
iteration, must be applied on each iteration for convergence. In [1] 
it was shown that, for monitor functions ρ and ρ′ whose variation is 
moderate, solutions to the Monge-Ampère equation also minimize 
the mean distortion, defined as the integral over X of the trace of 
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Fig. 1. Snapshot of the direct mesh at t = 90.
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the covariant metric tensor. Grid folding occurs when the distortion 
grows to a degree that the sides of a cell intersect. In this sense, grids 
obtained by the Monge-Kantorovich method are robust to tangling.

For time-stepping applications, this approach to grid adaptation can 
be accomplished in two distinct manners. The first is the sequential 
approach, in which ρ and ρ′ are error estimates at two successive time 
steps. In the second method, the direct method, ρ is the error estimate 
at the initial time and ρ′ is again the error estimate at the next time 
step. The reason these two approaches give different grids is that a 
composition of gradient maps is not a gradient map. (The inverse 
map, on the other hand, is a gradient map x = ∇x′Ψ, where Φ and Ψ 
are Legendre transforms.) We have tested both the sequential method 
and the direct method for several examples in order to determine the 
quality of the grids produced, specifically the robustness to distortion 
that leads to folding or tangling.

The PDE used was the passive scalar equation for a given 
incompressible flow

 
Rather than solve a discretized version of this passive scalar equation 
for χ using an error estimate, we have solved it for several relatively 
simple flows by the method of characteristics and proceeded to 
equidistribute χ itself. Equidistributing χ does not test the linking 
of the moving mesh approach with an error estimate, which is a 
goal for future work. Rather, equidistribution of χ was chosen as an 
efficient way to test the relation between the grids determined by the 
sequential and direct methods, respectively. That is, for the sequential 
method, we have ρ(x) = χ(x,t) and ρ′(x) = χ(x,t + Δt); the direct 
method takes ρ(x) = χ(x,0) and ρ′(x) = χ(x,t + Δt).

One of the example computations we have performed uses 
differential rotation Ω(r) = 16Ω0max[r(0.5 – r),0] on 
X = (0,1) × (0,1), with Ω0 = –0.1. The grid obtained with the direct 
method is shown in Fig. 1 at t = 90. Figure 2 shows the 
equidistribution error, the mesh distortion, and the maxima of the 

absolute values of the x- and 
y-components of the grid 
velocity. These quantities are 
shown for both the sequential 
method and for the direct 
method. Clearly, the direct 
method is better with respect to 
equidistribution and distortion, 
and also has somewhat smaller 
grid velocities. After t ≈ 90, the 
sequential method begins to lose 
accuracy and soon breaks. The 
direct method continues well 
past this point, giving a smooth 
mesh even when the passive 
scalar structures are much 
smaller than can be resolved on 
the grid. Based on this example 
and several other examples, we conclude that the sequential method 
works fairly well for short times, but distortions in the grid eventually 
develop. The direct method appears to be completely robust, and in 
our view is the method of choice.

For more information contact John M. Finn at finn@lanl.gov.

Fig. 2. Time histories of the equi-
distribution error, the mean mesh 
distortion, and the maxima of the 
absolute values of the grid velocity 
components.


